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Recap
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1 data exploration
summary statistics
visualization

0 transformations
0 resemblance
dis/similarity, distance

0 unsupervised
classification

cluster analysis



Recap (Numerical) Classification

Unsupervised Supervised

search for main gradients and homogeneous use external criteria to classify the dataset

groups in the data. > you supply information/rules about how

» No a priori knowledge/assumptions to classify

» Results depend mainly structure of the

dataset. « assignment of samples to groups

remain the same despite changes in the

- distance/similarity metric, choice of structure of the dataset

clustering method

« assignment of samples into groups may « examples are classification and
change even with slight changes of the regression trees (CART), random forest
dataset (e.g. by adding more samples) classifier, artificial neural networks
(ANN), etc.

« examples of unsupervised methods are
cluster analysis, TWINSPAN

(k-means clustering, can either be supervised or unsupervised)
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Supervised classification
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Classification tree analysis (CT) for gualitative
response variables. Classification of new samples

using a decision tree.

Regression tree analysis (RT) for quantitative
response variables.

Classification and regression tree analysis (CART)
combines these two procedures.

Random forest classifier combines bootstrapping
(repeated random subsampling) of variables to
produce more robust decision trees



Classification Trees

Uses two datasets
Univariate response
Multivariate explanatory variables

Divides the dataset into groups (nodes)

Applies a logical condition for each division (binary
splits)

* Construction of a decision tree
Reads from top to bottom (divisive)

Allows discriminating among explanatory
variables
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Decision Trees

Which factors determine the
biomass of earthworms?

> tree-like diagram
resulting from repeated
splitting of the response
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the explanatory variables
at each split

> allows
prediction/decisions
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Decision Tree

TRUE/FALSE root node
Yes/No \ /

N internal nodes
- ,-"'"- 1 |--
“ (branches)

* T.B03ET
T4 TR B

leaf nodes
(leaves)
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an example:

What predicts whether or not a person loves
Cool as Ice?

Loves Drinks Age Loves

Icecream coke Cool as
Ice?
Person 1 Yes Yes 7 No
Person 2 Yes No 12 No
Person 3 No Yes 18 Yes
Person 4 No Yes 35 Yes
Person 5 Yes Yes 38 Yes
Person 6 Yes No 50 No
Person 7 No No 88 No
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find the root...

icecream, beer, age?

Loves Drinks Loves
Icecream coke Cool as

o

Ice?

personl Yes Yes 7 No
person2 Yes No 12 No
person3 No Yes 18 Yes TRUE FALSE
person4 No Yes 35 Yes
person5 Yes Yes 38 Yes _ _
person6 Yes No 50 No Yes No Yes No
1 3 2 1

person? No No 88 No /



find the root...

) TRUE FALSE
icecream, coke, age?

Loves Drinks Loves
Icecream coke Cool as
Ice?

personl
person2
person3
person4
person5
person6

person7
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Gini Impurity

Gini = 1-(prob of Yes)?-(prob of No)?

Yes No Yes No
1 3 2 1
1 — (—)2—(—=)2=0.375 0.444
1+3 1+3
\ J
|
Gini Impurity:

weighted average of leaf impurities

4

3
e

4+3

)*0.375 + (—— )*0.44 = 0.405
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find the root...

Gini Impurity: 0.405 Gini Impurity: 0.214
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Gini Impurity of

/ numerical data?

Loves
Cool as

Ice?

95 | 7 No . 5429
15 Bl 9343
265 | o Yes 0.476 \ J
65| > 0476 '
” 38  Yes 0.343 Gini Impurity: 0.429
65 | L 0429
88 No
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keep splitting impure nodes...

TRUE FALSE
! ! «majority vote»

—— -
Tm5//\\Q§s
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model error and model selection

Model error (Error)

* misclassifications (errors) of
the terminal leaves

* trends to 0 with increasing
tree size

e Prediction error, Relative
error or Cross Validation
Error (CV)

 sum of the errors of the
terminal branches achieved by
cross-validation

* measures uncertainty of
forecasting

* reaches a minimum for an
optimal tree size (=> pruning)
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0/3

Yes
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0/19

Error: 0.133 CV Error: 0.733 SE: 0.192
Missclass rates : Null = 0.333 : Model = 0.0444 : CV = 0.244




Regression trees

e Quantitative response

* Synthetic variable representing a global feature

Ex. : diversity index of the community, density of an invasive
species, etc...

* Aim: evaluate the response variable according to the
explanatory variables and forecast the values of this
quantitative descriptor from explanatory variables
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dune vegetation dataset (R::vegan)

e cover (Braun-Blanquet classes, 0 - 9) of 30 plant
species at 20 dune meadow sites (2 x 2 m) in the
Netherlands Batterink & Wijfels 1983

[l species names are abbreviated (4 genus + 4 species
letters, ex: Achimill = Achillea millefolium)

e dune.env

(1 20 observations of environmental data
A1: thickness of soil A1 horizon (numeric)
Moisture: soil moisture with levels 1-5

Management: biological farming (BF), Hobby Farming (HF), NM
gc\lature )and Conservation Management), SF (Standard farming)
actors

Use: land-use with levels Hayfield, Haypastu, Pasture
Manure: factor with levels 0-4
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Univariate regression tree
How does the number of plant species depend on management

strategy?

Mean of the
response variable
“number of
species”,
predicted value

Number of objects
in the branch
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Management=NM

Node 4

Node 1 (root)

Management=BF NM,SF | Management=HF

Node 2

Management=BF,SF

n=6

Moisture=1

Node 3

Node 5 12.6
Moisture=2,4,5 n=5

Node 6

o
w

Node 8

Node 7
A1>=4.25 | A1<4.25

Node 9

9.25 12.5
n=4 n=2

Error: 0.544 CV Error: 0.86 SE: 0.268



multivariate regression tree

How do species abundances depend on management
strategy?

Belper
® Empnig

® Junbuf Moisture=4,5 | Moisture=1,2
Junart

® Airpra
® FElepal
Rumace 1.6e+03 : n=20

= Viclat Barplot of the average
® Brarut

Ranfla abundance of species,

m Cirarv Predicted abundance
®m Hyprad

Leoaut
= Potpal 1| Deviance (sum of the

® Poapra ]
Calcus squared differences to

= Tripra average)
®m Trirep
Antodo

:gggﬁﬁl Management=NM | Management=HF SF Manure=4 | Manure=0,1,2,3

Poatri
= Chealb slhianlal ot Lkl
® Elyrep 586 : n=9 676 : n=11
Sagpro
® Plalan
m Agrsto
Lolper
® Alogen

®m Brohor

176 : n=4 240 : n=5 105:n=3 407 : n=8

Error: 0.58 CV Error: 1.07 SE: 0.0915
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Implementation in R
partykit: :Ctree (conditional Inference Trees)

 Combines recursive binary
5\ partitioning with
1.9 permutation tests
.
(Bonferroni-adjusted p-

I e value for each node)
e Stops when no significant
p < 0.001 .. .

e oy associations (regression
NodeS(n/=46) I\E:IeG(n=8 Node 7 (n = 46) relatlonShlp) between any
- 1 - 1 - .

. 0.8 - 08 - predictor and the response
- 0.6 0.6
- 04 - 04 - can be found (no tree
e e R e I 0 —1—T7 i
setosa virginica setosa virginica setosa virginica prunlng necessary)

* Can handle weighted

But see also: rpart predictors
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Advantages of CART methods

e powerful tool for data mining
e easy to build and interpret decision trees

e robust and flexible technique
* All sorts of variables (binary, multi-class, ordered)
* Accepts missing data
* No assumptions on the variable distribution and relationships

BUT: Trees have one aspect that prevents them from being the
ideal tool for predictive learning, namely inaccuracy.

=> Random forest classifiers
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Random Forest Classifiers

» Use a large number of decision trees (=forest) each built
with a different, random sub-sample of the dataset
(bootstraping) and only a subset of explanatory variables

» Uses all decision trees for making a prediction. Criteria:
the most frequent pattern (majority vote).

=PrL



Random Forest Classifiers

» Random Forest trees are generated using bootstraping
Bootstrap: resampling the dataset with replacement
for constructing the decision tree

» For each node, only a subset of explanatory variables

are taken randomly
» iterate using different numbers of explanatory variables

» Generate many trees

» run data through all trees and measure the outcomes,
aggregate all outcomes to make a decision
(prediction).

» Bootstrap and aggregate => “bagging”

» use out-of-bag samples to evaluate random forest
classifier performance
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example: Use V1, V2, BMI, Sport to predict
health state

bootstrap samples

Health Sport?
state
ILL

— U

Health Sport?
state

Well 1 1 45 No P " 0 1 3 Yes
Well 1 0 65  Yes ‘>\ﬁ‘ Well 1 0 65  Yes
e Well 1 0 65 Yes
¥select n explarlatory
Health | V1 2y
— state

Rw I 0
0
Health Sport?
R L E
) L{u T Well 1 ILL
"""" ool predict second no It 1 S

ell 0 Yes



PREDICTION

PREDICTION

PREDICTION
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MAJORITY VOTE TAKEN

Y

FINAL PREDICTION MADE




Out-of-bag samples (OOB)

Health V1 V2 Sport?
state
25 No

ILL 0 1

ILL 0
Well 1 1 45 No I 0 1 32
Well 1 0 65 Yes Well 1 0 65
ILL 0 1 32 Yes well 1 0 65

Typically ~1/3 of samples are not

included by bootstrapping into

random forest classifier tree

generation

= Use these samples to evaluate
random forest classifier
performance: (OOB error = fraction
correctly classified OOB samples)
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Health V1 \'/ Sport?
state
1 25 No

Yes
Yes
Yes



Example: microbes

Dataset: microbes and environmental variables (nutrient availability)
in a wetland

132 observations, 70 species (spe) and 15 environmental variables
(env)

Cluster Dendrogram

5 groups => building a
cutree object with k =
° 5 groups (spebw.g)

Height

bbb o JiLLp s e b

EE] SELTHC RO AONE R IR AN

BRI S G SERA<
= = ".":'I‘.:" R ?-q:_’.?:‘

spe.db
helust (*, "ward")
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Example: microbes

rf.env = randomForest(spebw.g-~., env, ntree=500, mtry=10, proximity=T)

ntree: number of decision trees

mtry: number of variables (species) selected for each node in the tree
proximity: keep estimates of closeness of pairs of samples

rf.spebw

pH
cond
Ca
Na o
Fe e

PO4 o

DWT o

S04 o

Mg o

021 o
NH4 o}
02mg o
Barwa o
NO3 o

0 2 4 6 8 10

MeanDecreaseGini
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12

Classification of the most important variables.
Gives some important explanatory variables for
the given classification.

OOB estimate of error rate: 27.27%
(36 missclassified out of 132 samples)



Example: microbes

rf.spe = randomForest(spebw.g-~., spe, ntree=500, mtry=10, proximity=T)

rf.spebw

mic.pat o]
par.irr o
tra.gen ° Classification of the most important
ass.mus .
hya pap variables.

Gives some important response variables

arc.dis
(species) for the given classification

(o]

hel.ros
tri.lin
amp.fla o
neb.tin
neb.boh
eug.aca
arc.vul
neb.mil o
dif.glo
eug_fil
cen.obl
eug.tub
eug.cil o
eug.rot
arc.gib
tri.enc
dif.mic
cyp.sp.
cen.min
cen.aer
dif.ele
hya.ele
dif.sp

oo
oo
%004

C.OOO

OOB estimate of error rate: 9.85%
(13 misclassified out of 132 samples)

OOOOOOO

%00

MeanDecreaseGini
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Classification or
regression trees

+ Useful for qualitative and
quantitative prediction

+ Fast

+ accepts missing data

+ Visual discrimination

+ Tree easy to interpret

+/- Pruning of the tree

- No option for selecting variables
- Requires a low CV Error for
prediction
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Random Forest

+ Useful for qualitative and
quantitative prediction

+ Provides variable importance
(ranking)

+ Robust (bootstraping)

+ accepts missing data (in

explanatory variables and in new

predictions)

- individual decision trees are not
directly interpretable (‘Black Box’)
- sometimes slow
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nature
climate change

LETTERS

https://doi.org/10.1038/541558-018-0393-5

Widespread loss of lake ice around the Northern
Hemisphere in a warming world

SapnaSharma @', Kevin Blagrave ©'", JohnJ. Magnuson?", Catherine M. O'Reilly 3",
SamanthaOliver?, RyanD.Batt (5, Madeline R. Magee®%, Dietmar Straile’, Gesa A. Weyhenmeyer 8,

Luke Winslow®? and R. lestyn Woolway'"

Ice provides a range of ecosystem services—including fish
harvest, cultural traditions?, transportation®, recreation* and
regulation of the hydrological cycle®—to more than half of the
world's 117 million lakes. One of the earliest observed impacts
of climatic warming has been the loss of freshwater Ice®,
with corresponding climatic and ecological consequences’.
However, while trends in ice cover phenclogy have been
widely documented®***, a comprehensive large-scale assess-
ment of lake ice loss is absent. Here, using observations from
513 lakes around the Northern Hemisphere, we Identify lakes
vulnerable to ice-free winters. Our analyses reveal the impor-
tance of air temperature, lake depth, elevation and shoreline
complexity in governing ice cover. We estimate that 14,800
lakes currently experience intermittent winter ice cover,
increasing to 35,300 and 230,400 at 2 and 8 °C, respectively,
and impacting up to 394 and 656 million people. Our study
illustrates that an extensive loss of lake ice will occur within
the next generation, stressing the importance of climate miti-
gation strategies to preserve ecosystem structure and func-
tion, as well as local winter cultural heritage.

in some winters™'', This transitional period from annual winter ice
to permanent loss of ice cover may endure for decades”. The fac-
tors influencing whether or not ice forms are well known; previ-
ous research has indicated that air temperature, wind speed, and
lake size are essential components to ensure that vertical heat
transfer is sufficient to cool surface water temperatures to 0°C'*".
Precipitation”, snow cover, cloud cover, solar radiation", distance
to coastline'* and regional differences™* can govern the timing of
ice formation and ice growth during the winter season. However,
previous research has not identified how the interactions between
features such as climate and lake shape (area and depth) will dictate
when and where the threat of lake ice loss is greatest. We provide
the first global estimate of how many lakes are likely to lose annual
winter ice cover as the climate warms.

We used updated lake ice cover records for 346 lakes in North
America, 136 lakes in Europe, and 32 lakes in Asia to evaluate the
threat of lake ice loss'” (Supplementary Fig. 1). Lakes were desig-
nated as annual or intermittent winter ice-covered lakes. Annual
ice-covered lakes experienced complete ice cover every winter,
whereas intermittent ice-covered lakes had one or more winters



